

Essential Trace Minerals

for Exceptional Performance

Zinpro Performance Minerals[®] deliver proven benefits for Finfish Performance, Health and Meat Quality

Trace minerals play numerous essential roles within cells and metabolic processes, which makes them vital for optimal nutrition and health of animals - including fish.

The molecular design of Zinpro Performance Minerals® guarantees essential trace minerals, such as Zinc, Manganese, Copper, Iron, Selenium and Chromium, are effectively delivered and best utilized by fish for modern aquaculture production. Research shows that supplementing fish diets with Zinpro Performance Minerals is essential for optimizing growth performance, boosting immune response and improving fillet quality.

The source and availability of trace minerals are key to satisfy the needs of finfish in an efficient and sustainable way through their life cycle.

Trace Mineral Benefits in Finfish

Study 1

Comparison of European Seabass Response to Inorganic Minerals and Zinpro Performance Minerals (0.5x)

— Key Findings

- Zinpro Performance Minerals (ZPM) supplemented at half the level of inorganic sources maintained growth performance of European seabass (Fig. 1), indicating ZPM is a more effective trace mineral source than inorganic forms.
- Partial or complete replacement of inorganic trace minerals with ZPM significantly (P < 0.05) increased the number of goblet cells in the intestine and skin of

Growth Performance Fig. 1

European seabass (Fig. 2), demonstrating enhanced barrier defense mechanisms against pathogens.

• Activity of glutathione peroxidase (GPx) significantly (P < 0.05) increased in fish supplemented with ZPM at half the level of inorganic trace minerals (Fig. 3), indicating ZPM (in particular Availa[®]Se vs. Selenite), is more effective in sustaining antioxidant capacity in European seabass.

Health Fig. 2

Health Fig. 3

$\begin{array}{c} \textbf{Diet A-lnorg} \quad \textcircled{O} \quad \textbf{Diet B-lnorg/ZPM} \quad \textcircled{O} \quad \textbf{Diet C-ZPM 0.5x} \\ \hline \textbf{Diet A-lnorg} \quad \textcircled{O} \quad \textbf{Diet B-lnorg/ZPM} \quad \textcircled{O} \quad \textbf{Diet C-ZPM 0.5x} \\ \hline \textbf{Diet A-lnorg} \quad \textcircled{O} \quad \textbf{Diet B-lnorg/ZPM} \quad \textcircled{O} \quad \textbf{Diet C-ZPM 0.5x} \\ \hline \textbf{Diet A-lnorg} \quad \textcircled{O} \quad \textbf{Diet B-lnorg/ZPM} \quad \textcircled{O} \quad \textbf{Diet C-ZPM 0.5x} \\ \hline \textbf{Diet A-lnorg} \quad \textcircled{O} \quad \textbf{Diet B-lnorg/ZPM} \quad \textcircled{O} \quad \textbf{Diet C-ZPM 0.5x} \\ \hline \textbf{Diet A-lnorg} \quad \textcircled{O} \quad \textbf{Diet B-lnorg/ZPM} \quad \textcircled{O} \quad \textbf{Diet C-ZPM 0.5x} \\ \hline \textbf{Diet A-lnorg} \quad \textcircled{O} \quad \textbf{Diet B-lnorg/ZPM} \quad \textcircled{O} \quad \textbf{Diet C-ZPM 0.5x} \\ \hline \textbf{Diet A-lnorg} \quad \textcircled{O} \quad \textbf{Diet B-lnorg/ZPM} \quad \textcircled{O} \quad \textbf{Diet C-ZPM 0.5x} \\ \hline \textbf{Diet A-lnorg} \quad \textcircled{O} \quad \textbf{Diet B-lnorg/ZPM} \quad \textcircled{O} \quad \textbf{Diet C-ZPM 0.5x} \\ \hline \textbf{Diet A-lnorg} \quad \textcircled{O} \quad \textbf{Diet B-lnorg/ZPM} \quad \textcircled{O} \quad \textbf{Diet C-ZPM 0.5x} \\ \hline \textbf{Diet A-lnorg} \quad \textcircled{O} \quad \textbf{Diet B-lnorg/ZPM} \quad \textcircled{O} \quad \textbf{Diet C-ZPM 0.5x} \\ \hline \textbf{Diet A-lnorg} \quad \textcircled{O} \quad \textbf{Diet B-lnorg/ZPM} \quad \textcircled{O} \quad \textbf{Diet C-ZPM 0.5x} \\ \hline \textbf{Diet A-lnorg} \quad \textcircled{O} \quad \textbf{Diet B-lnorg/ZPM} \quad \textcircled{O} \quad \textbf{Diet C-ZPM 0.5x} \\ \hline \textbf{Diet A-lnorg} \quad \textcircled{O} \quad \textbf{Diet B-lnorg/ZPM} \quad \textcircled{O} \quad \textbf{Diet C-ZPM 0.5x} \\ \hline \textbf{Diet A-lnorg} \quad \textcircled{O} \quad \textbf{Diet B-lnorg/ZPM} \quad \textcircled{O} \quad \textbf{Diet C-ZPM 0.5x} \\ \hline \textbf{Diet A-lnorg} \quad \textcircled{O} \quad \textbf{Diet B-lnorg/ZPM} \quad \textcircled{O} \quad \textbf{Diet B-lnorg} \\ \hline \textbf{Diet A-lnorg} \quad \textcircled{O} \quad \textbf{Diet B-lnorg} \\ \hline \textbf{Diet A-lnorg} \quad \textcircled{O} \quad \textbf{Diet B-lnorg} \\ \hline \textbf{Diet A-lnorg} \quad \end{matrix} \\ \hline \textbf{Diet A-lnorg} \quad \textcircled{O} \quad \textbf{Diet B-lnorg} \\ \hline \textbf{Diet A-lnorg} \quad \end{matrix} \\ \hline \textbf{D$

Study Criteria

This study compared the efficacy of Zinpro Performance Minerals (metalamino acid complexes) with inorganic minerals (sulfates) in the diet of European seabass. Growth performance and health biomarkers were evaluated.

	Diet A-Inorg	Diet B- ZP	-Inorg/ M	Diet C-ZPM 0.5x
Fe, ppm	80	40	40	40
Cu, ppm	6	3	3	3
Zn, ppm	100	50	50	50
Mn, ppm	24	12	12	12
Se, ppm	0.24	0.12	0.12	0.12

 \bigcirc

Initial body weight: 15 g Stocking density: 1.24 kg/m³ Replications: 4 Duration: 120 days Salinity: 34 ppt

46% CP/18% fat 19% fish meal, 8% fish oil Feeding: 2 times/day, to satiation

Location: Hellenic Centre for Marine Research (HMCR) Crete, Greece

Study 2

Availa®Zn Improves Atlantic Salmon Growth and Resistance to Sea Lice

Key Findings

- Availa®Zn supplemented at half (60 ppm or mg/kg diet) the level of inorganic zinc (120 ppm or mg/kg) resulted in numerically higher body weight and significantly (P < 0.05) improved FCR of Atlantic salmon (Fig. 1).
- Furthermore, Availa-Zn supplemented at half the level of inorganic zinc was significantly (P < 0.05) more efficient in reducing *Caligus* abundance in salmon (Fig. 2).
- Skin score evaluation indicated fish fed zinc as Availa-Zn had a more desirable level of skin integrity than fish fed either diet containing inorganic zinc (Fig. 3). In this study, best performance and health results were found with a 20% fish meal diet supplemented with 60 ppm zinc as Availa-Zn. Yet, required supplementation level of zinc as of other essential trace minerals is expected to increase as their level and availability is becoming severely limited through progressive replacement of fish meal with plant proteins.

Growth Performance Fig. 1

Health Fig. 2

Average Caligus Abundance, per Fish

Health Fig. 3

Fish Exhibiting Skin Score, %

 (\bigcirc)

Study Criteria

Zn Supplementation, ppm 7nSO₄ Availa®Zn Sulfate 120 Sulfate:Availa-Zn 60 60 Availa-Zn 60 Initial body weight: 118 g Stocking density: 45 fish/tank (600 L) Replications: 4 Duration: 80 days (60 d growth + 20 d Caligus challenge) Salinity: 32 ppt 2000 47% CP/20% fat

20% fish meal. 6% fish oil Feeding: 2 times/day, to satiation

> Location: Fundación Chile; Puerto Montt, Chile

Study 3

Effects of Availa-Zn on Asian Seabass Growth Performance and Zinc Deposition

Key Findings

- Incr spe
- Ava
- Res for dep

Grou

 Increasing zinc from Availa-Zn, from 0 to 50 ppm significantly (P < 0.05) improved specific growth rate (SGR) (Fig. 1). 									Study Crite		
• Availa-Zn supplementation increased whole body and bone zinc content (Fig. 2).							()	This study was designed			
• R fc de	esults sugges or Asian seab eposition of z	st that 50 p ass under th zinc for body	opm zinc fror nis study con y reserves. Fig. 1	n Availa-Zn i ditions to pr	s the minimu omote growt	m supplemen h performance	tal level e and		level of supplemental Availa-Zn in the diet of Asian sea bass (Lates calcarifer). Availa-Zn was evaluated based on parameters measured for zinc deposition and growth performance.		
	3.4		Growth Zn From	Performance Availa-Zn, ppm			×		Treatment Zn, ppm Availa-Zn Control 0		
ay	3.3	•		•		~			Availa-Zn 25 25		
, %/d	3.2			N - 2E 05x2	1 0 00EZy 1 2 0	1492			Availa-Zn 100 100		
SGR	3.1			$R^2 = 0.9287$	+ 0.0037X + 2.3	1402			Availa-Zn 200 200		
	2.9 0	50		100	150	200			Initial body weight: 3.5 g		
Gr	owth Perfo	ormance	Fig. 2						40 fish/tank (500 L) Replications: 4 Duration: 8 weeks		
Body and Tissues Zinc Deposition									47% CP/8% fat		
				Treatment				0000	Feeding:		
	Zn, mg/kg	Control	Availa-Zn 25	Availa-Zn 50	Availa-Zn 100	Availa-Zn 200			3 times/day, 2-3.5% BW		
	Whole Body	12.64	13.87	12.38	12.23	11.74		(m	location:		
	Bone	47.03	47.97	51.85	53.45	52.68		A.	Kasetsart University		
	Liver	12.20	16.55	19.27	18.62	18.22		Gree	Bangkok, Thailand		
	Fillet	5.22	5.95	6.38	6.76	7.36					

Source: Mihai Sun, Alba K. Fireman, Terry L. Ward, Claudia V. Pavez, and Javier Alcaino. Growth Performance, Skin Strength and Consequent Infestation of Sea Lice Caligus rogercresseyi on Atlantic Salmon (Salmo salar) Fed with Availa-Zn. 2017 World Aquaculture Society, Latin American & Caribbean Chapter, November 7-10, 2017, Mazatlán, Mexico.

Source: Orapint Jintasataporn, Terry Ward, Srinoy Chumkam and Oratai Jintasataporn. The Optimum Dose and Relative Bioavailability of Zinc Amino Acid Complex in Diet for Asian Seabass (Lates calcarifer, Bloch 1790). International Symposium on the Feeding and Nutrition of Fish, June 5-10, 2016, Sun Valley, Idaho, USA.

eria

Study 4

Efficacy of Availa-Zn on Growth Performance and Immune Status of Pangasius Catfish

— Key Findings

- Supplementing Availa-Zn in diets of Pangasius catfish significantly (*P* < 0.05) improved fish average daily gain. Adding 50 ppm zinc from Availa-Zn as the sole source showed the best growth performance (Fig. 1).
- Gradual replacement of inorganic zinc with Availa-Zn significantly (P < 0.05) improved fish

Growth Performance Fig. 1

0

Sulfate

immune parameters, such as red and white blood cell count, and serum protein (Fig. 2).

• Gradual replacement of inorganic zinc with Availa-Zn significantly (*P* < 0.05) decreased fillet drip loss on week 4 and 8 (Fig. 3).

Health Fig. 2

Meat Quality Fig. 3

Availa-Zn 30

Availa-Zn 60

Availa-Zn 50

Source: Orapint Jintasataporn, Terry L. Ward, and Supalug Kattakdad. The Effect of Zinc Source and Level on Growth Performance and Immune Parameters of Pangasius Catfish (*Pangasianodon hypophthalmus*). International Symposium on the Feeding and Nutrition of Fish, June 5-10, 2016, Sun Valley, Idaho, USA.

Study Criteria

This study was designed to assess the effect of supplemental zinc in Pangasius catfish (Pangasianodon hypophthalmus). Zinc was supplied as sole source $ZnSO_4$ or Availa-Zn, or as a combination of the two sources.

	Zn Supplementation, ppm	
	ZnS04	Availa-Zn
Sulfate	100	-
Availa-Zn 30	70	30
Availa-Zn 60	40	60
Availa-Zn 50	-	50

 \bigcirc

Initial body weight: 210 g Density: 15 fish/tank (1000 L) Replications: 4 Duration: 12 weeks

30% CP/6% fat 5% fish meal, 32% soybean meal Feeding: 3 times/day, 3-4% BW

Location: Kasetsart University, Bangkok, Thailand

Essential Trace Minerals for Finfish

BENEFIT	TRACE MINERALS	DESCRIPTION
Disease Resistance	Zinc, Manganese, Copper, Selenium, Iron	 Humoral immunity Cell-mediated immunity Non-specific immunity Antioxidant activity to remove free radicals and protect cell membranes
Bone, Scale and Fin Development	Zinc, Manganese, Copper, Selenium, Iron	Bone matrix development and maintenanceCell division and protein synthesis for normal tissue mineralization
Skin and Gut Integrity	Zinc, Manganese, Copper	 Improves wound healing Epithelial tissue integrity through maintenance of cell division, protein synthesis and antioxidant activity to remove superoxide radicals
Fertility	Zinc, Manganese, Iron, Copper, Selenium	 Reproductive hormone synthesis: steroidogenesis Helps avoid or reduce nutritional anemia Female maturity and fertility Egg development Egg viability Hatching rate Sperm maturation and quality Key to normal ovarian function
Muscle Development	Zinc, Copper, Selenium, Chromium	 Enzyme systems required for growth Energy and protein metabolism Cell membrane protection from peroxides Influences carbohydrate, lipid and protein metabolism
Early Stage Development	Zinc, Manganese, Copper, Selenium	 Energy and protein metabolism Cell proliferation Normal tissue mineralization Cell membrane protection Hemoglobin formation
Meat Quality	Zinc, Selenium, Chromium, Iron	 Cell membrane protection Antioxidant activity Influences carbohydrate, lipid and protein metabolism Enhanced meat color Reduced drip loss

Finfish Feeding Recommendations

		Minimum Requirement ZPM, mg/kg diet		
Mineral	ZPM Products	Coldwater Fish and Salmonids	Warmwater Fish	
Zn	ZINPRO® zinc methionine Availa®Zn	80	60	
Cu	CuPlex [®] Availa®Cu	10	10	
Mn	MANPRO° Availa®Mn	30	30	
Fe	Availa®Fe	100	100	
la		1	1	
Seb	Availa®Se	0.3	0.3	
Cr ^c	MiCroPlex [®] Availa [®] Cr	0.4	0.4	

^a Not a current ZPM source
 ^b Note upper limit allowed in EU is of 0.2 ppm, provided as organic source
 ^c Use where commercially available

Zinpro Recommendations

Zinpro exists to improve the wellness and performance of animals and contribute to a healthier, more sustainable world.

Visit **zinpro.com/aquaculture** to learn more about the products available in your area.

Or contact your local Zinpro representative.

