

ADVANCING PERFORMANCE TOGETHER

> **Essential Trace Minerals** for Exceptional Performance

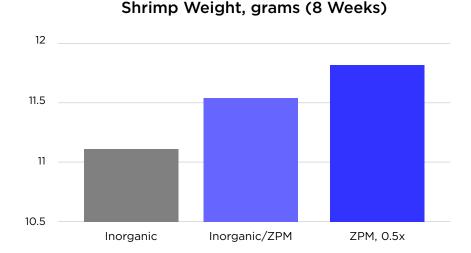


Zinpro Performance Minerals® deliver proven benefits for Shrimp Performance, Health and Meat Quality

Trace minerals play numerous essential roles within cells and metabolic processes, which makes them vital for optimal nutrition and health of animals – including shrimp.

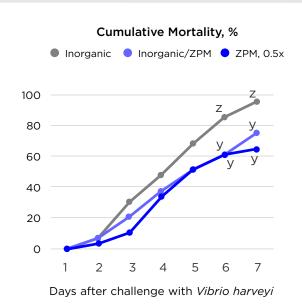
Research shows shrimp diets with Zinpro Performance Minerals[®] (ZPM) optimizes growth and improves animal wellness through modulation of the immune system. In addition, meat quality is improved, as measured by color, drip loss, lipid oxidation and nutritional value.

The source and availability of trace minerals is key to satisfy the needs of shrimp in an efficient and sustainable way throughout their life cycle.

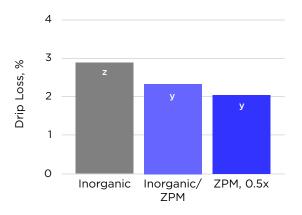


Comparison of Whiteleg Shrimp Response to Inorganic Minerals and Zinpro Performance Minerals® (0.5x)

Key Findings


- Zinpro Performance Minerals (ZPM) supplemented at half the level of inorganic mineral sources resulted in numerically higher final body weight (Fig. 1).
- Return on investment (ROI), as measured by additional income over feed cost, was 16% more for shrimp fed ZPM at 0.5x rate as compared to shrimp fed inorganic minerals. ROI for the combination of inorganic and ZPM was 11% more than inorganic alone.
- Cumulative mortality of shrimp challenged with *Vibrio harveyi* was significantly (*P* < 0.05) reduced when inorganic mineral sources were partially or completed replaced with ZPM (Fig. 2).
- Furthermore, drip loss of peeled white shrimp was significantly (*P* < 0.05) lower for shrimp fed diets supplemented with ZPM (Fig. 3).

Growth Performance Fig. 1



Source: Jintasataporn, O., Ward, T., Chumkam, S, Jintasataporn, O. 2015. The Efficacy of Mineral-Amino Acid Complex (Zn, Mn, Cu, Fe and Se) in Diets to Growth Performance, Immune Status and Meat Quality of White Shrimp, *Litopenaeus vannamei*. Aquac.Indones. 16:33-37

Health Fig. 2

Meat Quality Fig. 3

Peel Shrimp 4-Day Post-Refrigeration

Study Criteria

 \bigcirc

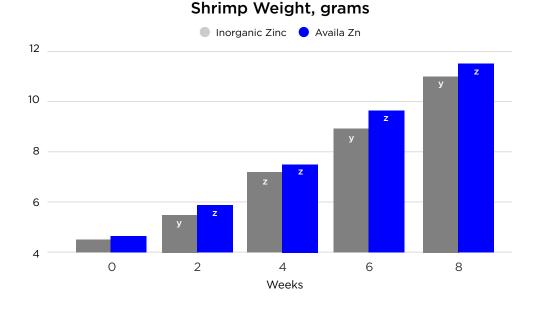
This study compared the efficacy of Zinpro Performance Minerals (metal-amino acid complexes) with inorganic minerals (sulfates) in the diet for whiteleg shrimp. Growth performance, resistance to bacterial challenge *Vibrio harveyi*, and meat quality were evaluated.

	Inorganic (sulfate)	Inorg	+ ZPM	ZPM (0.5x)
Zinc (ppm)	120	70	50	60
Manganese (ppm)	60	40	20	30
Copper (ppm)	32	22	10	16
lron (ppm)	100	50	50	50
Selenium (ppm)	0.3	0	0.3	0.15

Initial body weight: 4.4g Stocking density: 70 shrimp/m² Feeding: 4x per day Replications: 6 Feeding period: 8 weeks Salinity: 12ppt

35.5% CP/7.5% Fat
25% fish meal
3% shrimp meal
2% squid meal
20% soybean meal
5% poultry by-product meal

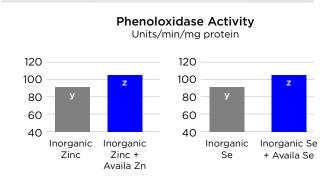
Location: Kasetsart University, Thailand

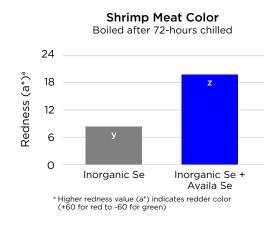

Availa[®]Zn and Availa[®]Se Supplementation Improves Growth, Health and Meat Quality

Key Findings

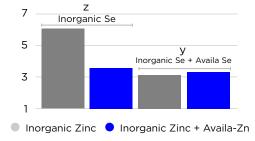
- Partial replacement of inorganic zinc with Availa Zn significantly (P < 0.05) improved shrimp weight (Fig. 1).
- Partial replacement of inorganic zinc and selenium with Availa Zn and Availa Se significantly (P < 0.05) increased hemocyte count and phenoloxidase activity, key biomarkers of shrimp immune response (Fig. 2).
- Modulation of the immune response by ZPM resulted in reduced cumulative mortality of shrimp challenged by *Vibrio harveyi*.
- Availa Se significantly (*P* < 0.05) improved redness of 72-hour chilled shrimp meat,

before and after boiling (data not shown). Availa Se also significantly (P < 0.05) improved redness of shrimp meat frozen for 14 days (Fig. 3).


- Whole shrimp drip-loss and meat rancidity were both significantly (P < 0.05) reduced by partially replacing inorganic Se with Availa Se (Fig. 3).
 Moreover, the effect of partially replacing inorganic Zn with Availa Zn on drip-loss tended to be more evident when an inorganic source of Se was used.
- Zn and Se accumulation significantly (P < 0.05) increased in the exoskeleton and hepatopancreas for shrimp fed Availa Zn and Availa Se (data not shown).


Growth Performance Fig. 1

Source: Mihai Sun, Terry Ward, Orapint Jintasataporn, Claudia Silva 2018. Efficacy of Availa Zn and Availa Se for White Shrimp (*Litopenaeus vannamei*). International Symposium on the Feeding and Nutrition of Fish, June 3-7, 2018, Las Palmas, Gran Canaria, Spain


Health Fig. 2

Meat Quality Fig. 3

Drip Loss, % Whole shrimp, after 72-hours chilled

Study Criteria

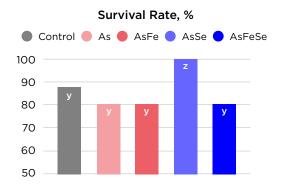
This study evaluated the effects of partially replacing inorganic Zn and Se with Zn from Availa Zn and Se from Availa Se on whiteleg shrimp growth performance, health and meat quality.

Inorganic Zn Inorganic Se	Availa Znª Inorganic Se	Inorganic Zn Availa Se ^b	Availa Zn Availa Se
120	70	120	70
	50		50
0.30	0.30	0.15	0.15
		0.15	0.15
	Inorganic Se 120	Inorganic Se Inorganic Se 120 70 50	Inorganic Se Inorganic Se Availa Se ^b 120 70 120 50 50 120 0.30 0.30 0.15

^a Availa Zn zinc amino acid complex ^b Availa Se zinc-L-selenomethionine

Initial body weight: 4g Stocking density: 60 shrimp/m² Feeding: 4x per day Replications: 6 Feeding period: 8 weeks Salinity: 30ppt

36.5% CP/8% fat 25% fish meal 3% shrimp meal 2% squid meal 20% soybean meal 5% poultry by-product



Location: Kasetsart University, Thailand

Supplementation with Availa®Fe and Availa®Se are Key in Coloration of Whiteleg Shrimp

Key Findings

- Diets supplemented with Availa Se showed improvements in survival rate (Fig. 1) and FCR (data not shown).
- The diet containing astaxanthin (As), Availa Se and Availa Fe significantly (P < 0.05) increased the hemocyte count and phenoloxidase activity (Fig. 2).
- Diet supplemented with 75ppm astaxanthin, 200ppm Availa Fe and 0.3ppm Availa Se (AsFeSe) significantly (P < 0.05) enhanced shrimp meat redness as indicated by the a* value and total carotenoid content of cooked shrimp shell and flesh (Fig. 3). SalmoFan[™] was able to score an increase in shrimp color from 23 to 29 in only four weeks with AsFeSe (data not shown).

Growth Performance Fig. 1

Health Fig. 2

Source: Jintasataporn, O., Ward, T., Chalemlap, S., Chumkam, S. Iron amino acid complex (Availa Fe) and zinc-L-selenomethionine (Availa Se) in diets enhance cooked Pacific white shrimp (*Litopenaeus vannamei*) color. International Symposium on the Feeding and Nutrition of Fish, June 3-7, 2018, Las Palmas, Gran Canaria, Spain.

The a* Value of Cooked Shrimp Fed with 5 Different Experimental Diets for 6 Weeks Control As AsFe AsFe AsSe AsFeSe 60 50 40 a* Value 30 20 10 0 2 weeks 4 weeks 6 weeks *Higher redness value (a*) indicates redder color (+60 for red to -60 for green) Shell Carotenoid Content, 2.5 2.0 (b/bm) 1.5 1.0 0.5 0 2 weeks 4 weeks 6 weeks

Study Criteria

This study was conducted to investigate shrimp coloration and immune response when astaxanthin was added to the diet alone or in combination with either iron or selenium, or with both iron and selenium.

Treatments	Astaxanthin (ppm)	Availa Fe (ppm)	Availa Se (ppm)
Control	-	-	-
As	75	-	-
AsFe	75	200	-
AsSe	75	-	0.3
AsFeSe	75	200	0.3

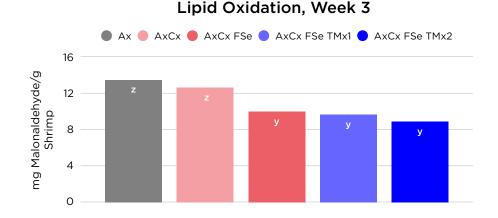
) D

Initial body weight: c.a. 6.5g Stocking density: 10 shrimp/100L aquarium Feeding: 3x per day Replications: 4 Feeding period: 6 weeks

12.5% fish meal3% squid meal25% soybean meal7.5% soy protein concentrate3% yeast10% wheat gluten22% wheat flour

Location: Kasetsart University, Thailand

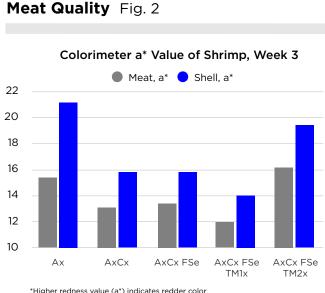
Meat Quality Fig. 3


Zinpro Performance Minerals[®] Spare Carotenoids For Pigmentation Purposes

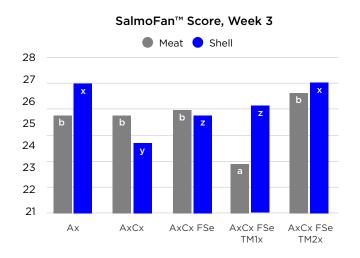
Key Findings

- Supplementation with ZPM can effectively and economically support the reduction of astaxanthin while maintaining cooked shrimp color, performance and health parameters (data not shown).
- The reduction of astaxanthin from 75 to 25ppm in combination with 25ppm canthaxanthin had no effect on lipid oxidation (Fig. 1) but it reduced meat and shell redness as indicated by a* value (Fig. 2) and SalmoFan[™] scores (Fig. 3).
- SalmoFan scores of shrimp shell dropped from 27 to 24.4 in only 3 weeks when fed 25ppm astaxanthin in combination with 25ppm canthaxanthin and no ZPM.
- Supplementation with 100ppm Fe as Availa Fe, 0.3ppm Se as Availa Se,

100ppm Zn as Availa^{*}Zn, 40ppm Mn as Availa^{*}Mn and 20ppm Cu as Availa^{*}Cu to AxCx diet (25ppm astaxanthin 25ppm canthaxanthin) increased SalmoFan score of shrimp shell back to that of control diet (75ppm astaxanthin).


- ZPM supplementation reduced lipid oxidation, measured as milligram malonaldehyde per gram shrimp (Fig. 1) highlighting antioxidant functions of TM as co-factors of key antioxidant enzymes.
- Results indicate that supplementation with ZPM (AxCx FSe TMx2 treatment) can boost shrimp antioxidant capacity in only 3 weeks, allowing astaxanthin to be diverted for pigmentation purposes instead of antioxidant functions (sparing effect) saving \$66 US per ton of feed.

Meat Quality Fig. 1


Source: Boggino *et al.*, 2020. Trace Mineral Amino Acid Complexes (Availa Zn, Mn, Cu and Fe) and Zn-L-Selenomethionine (Availa Se) in white leg shrimp (*Litopenaeus vannamei*) Diets Enhance Cooked Shrimp Color. Aquaculture America, February 9-12th, 2020, Hawaii.

Higher redness value (a) indicates redder color (+60 for red to -60 for green)

Meat Quality Fig. 3

Study Criteria

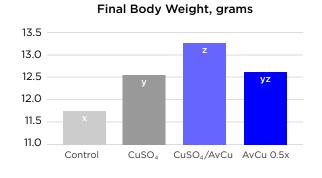
Trace minerals participate as cofactors of important enzymes related to the antioxidant defense mechanism. This study evaluated their effect on sparing carotenoids for pigmentation purposes.

)		enoidsª, pm		ZF	PM⁵, pr	om	
Treatment	ASTX	CANX	Availa Fe	Availa Se	Availa Zn	Availa Mn	Availa Cu
Ax	75	-	-	-	-	-	-
AxCx	25	25	-	-	-	-	-
AxCx FSe	25	25	100	0.3	-	-	-
AxCx FSe TMx1	25	25	100	0.3	50	20	10
AxCx FSe TMx2	25	25	100	0.3	100	40	20

^a Wisdom pink 10%, Wisdom red 10%; ASTX = astaxanthin, CANX = canthaxanthin ^b ZPM were supplemented on top of basal diet that included inorganic premix (mg/kg diet) : 0.2 Co, 25 Cu, 11, 30 Fe, 30 Mn, 0.35 Se, 100 Zn.

Initial body weight: 7-8g Stocking density: 20 shrimp/300L tank Feeding: 3x per day Replications: 5 Feeding period: 3 weeks Salinity: 10-15ppt

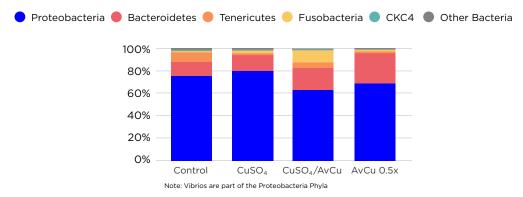
38% CP/6% Fat 12.5% fish meal 3% squid meal 25% soybean meal 7.5% fermented soy meal 3% yeast 10% wheat gluten 22% wheat flour



Location: Kasetsart University, Thailand

A. Effect of Copper Source on Growth and Intestinal Microbial Communities of Whiteleg Shrimp

Key Findings


- Cu supplementation positively affected growth of shrimp.
- Availa*Cu at 0.5x rate (15ppm Cu) of CuSO₄ (30ppm Cu) maintained shrimp FBW (Fig. 1), showing Availa Cu is more effective than inorganic Cu.
- Marked trends in microbial phyla suggest microbial communities were being influenced by copper source (Fig. 2a).
- Combination of Availa Cu + CuSO₄ Cu (total 30ppm Cu) resulted in numerically better growth than Availa Cu at 0.5x rate, indicating higher Cu supplementation may be required for maximized shrimp performance.
- The reduction on *Proteobacteria* phylum which includes the *Vibriocaceae* family is related to overall shrimp health when a fed combination of CuSO₄ and Availa Cu or Availa Cu at 0.5x rate.

Growth Performance Fig. 1

Health Fig. 2

Source: Yuan et al., 2019a. Effects of different dietary copper sources on the growth and intestinal microbial communities of Pacific white shrimp (*Litopenaeus vannamei*). Aquac. Nutr. 25: 828-840.

B. Effect of Copper Source on Shrimp Antioxidant Capacity and Immune Response

Key Findings

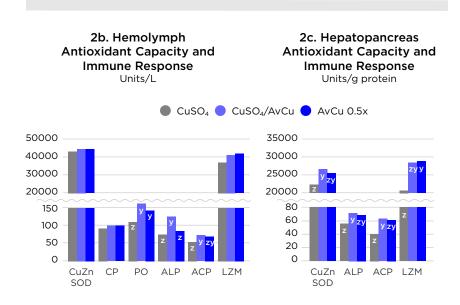
- Partial or complete replacement of CuSO₄ with Availa Cu at 0.5x rate significantly improved phenoloxidase activity in hemolymph (Fig. 2b).
- Partial or complete replacement of CuSO₄ with Availa Cu at 0.5x rate increased hepatopancreatic Cu/Zn SOD, ALP and ACP indicating better antioxidant capacity and immune response in shrimp fed Availa Cu.
- Activity of hepatopancreatic LZM was significantly increased in shrimp fed Availa Cu at 0.5x rate (Fig. 2c).
- Activities of hepatopancreatic Cu/Zn SOD, ALP and ACP were highest when the treatment was combined, but not statistically different from Availa Cu at 0.5x.
- The inclusion of optimal levels of Availa Cu in shrimp diets improved shrimp health biomarkers, demonstrating that robust shrimp can be grown under commercial conditions.

Study Criteria

This study evaluated effects of dietary copper source on shrimp growth, intestinal microbial communities, antioxidant and immune response.

<u> </u>	/ Treatment, ppm added to Control				∍d
	Trace Mineral	Control	CuSO ₄	CuSO ₄ / AvCu	
	Copper	0	30	15/15	15

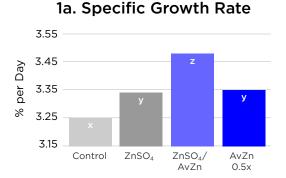
Initial body weight: 1.86 g IBW Stocking density: 30 shrimp/tank Feeding: 3x per day Replications: 3 Feeding period: 8 weeks Salinity: 25-28ppt



43% CP/8% Fat 30% fish meal 3% krill meal 22% soybean meal 6% poultry by-product 6% peanut meal

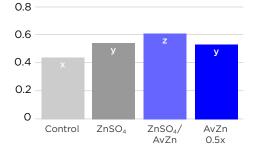
Location: Ningbo University, China

Health Fig. 2

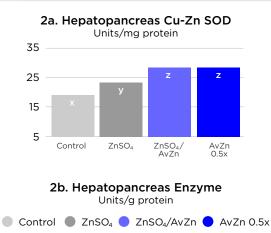

Source: Yuan *et al.*, 2019b. Effects of dietary dosage forms of copper supplementation on growth antioxidant capacity, innate immunity enzyme and gene expressions for juvenile *Litopenaeus vannamei*. Fish and Shellfish Immunology 84:1059-1067

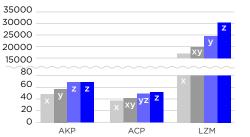
Effect of Zinc Source and Level on Shrimp Growth Performance, Meat Quality, Antioxidant and Immune Capacity

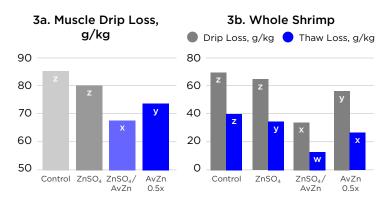
Key Findings


- Availa^{*}Zn at 0.5x rate (60ppm Zn) of ZnSO₄ maintained Specific Growth Rate (SGR) (Fig. 1a) and Feed Efficiency (FE) (Fig. 1b), showing Availa Zn is more effective than inorganic Zn.
- The combination of 60ppm Availa Zn + 60ppm ZnSO₄ improved shrimp survival rate (data not shown), SGR and FE by 4.3, 3.1 and 20% respectively (Fig. 1a & 1b).
- Hepatopancreas antioxidant (Fig. 2a) and immune-related enzymes (Fig. 2b) were higher in shrimp fed a combination of ZnSO₄ and Availa Zn or Availa Zn at 0.5x rate.
- Availa Zn in combination with ZnSO₄ or at 0.5x rate, reduced drip loss in muscle (Fig. 3a) and drip loss and thaw loss in whole shrimp (Fig. 3b).

- Availa Zn in combination with ZnSO₄ or at 0.5x rate translated to an economic advantage over the control (ROI) of 45.6% and 24.5%, respectively.
- Best performance was with the combination of 60ppm Zn as ZnSO₄
 + 60ppm Zn as Availa Zn, which indicates higher Zn supplementation may be required for maximized shrimp performance.
- ROI for Availa Zn at 0.5x rate is underestimated due to the difficulty in attributing economic value to benefits seen on antioxidant defense, immune response and product quality. Higher ROI is expected in the field and under more challenging conditions.


Growth Performance Fig. 1




Source: Yuan et al., 2020. Aquaculture 522, 735120.

Health Fig. 2

Meat Quality Fig. 3

innate immunity.

This study aimed to provide novel insight into how the supplementation

and level of a Zn source effected

whiteleg shrimp: growth response,

meat quality, oxidation resistance and

Initial body weight: 1.84g Stocking density: 30 shrimp/tank Feeding: 3x per day **Replications: 4** Feeding period: 8 weeks Salinity: 25-28ppt

43% CP/7.6% fat 30% fish meal 3% krill meal 22% soybean meal 6% poultry by-product meal 6% peanut meal

ZnSO₄/

AvZn

AvZn

0.5x

Location: Ningbo University, China

Study Criteria

Essential Trace Minerals for Shrimp

BENEFIT	TRACE MINERALS	DESCRIPTION
Disease Resistance	Zinc, Manganese, Copper, Selenium, Iron	 Humoral immunity Cell-mediated immunity Antioxidant activity to remove free radicals and protect cell membranes
Exoskeleton Health	Zinc, Manganese, Copper	 Exoskeleton formation, development and reconstruction during molting Cell division and protein synthesis for normal tissue mineralization
Gut Integrity	Zinc, Manganese, Copper	 Improves wound healing Epithelial tissue integrity through maintaining of cell division, protein synthesis and antioxidant activity to remove superoxide radicals
Muscle Development	Zinc, Selenium, Chromium, Copper	 Enzyme systems required for growth Energy and protein metabolism Cell membrane protection from peroxides Influences carbohydrate, lipid and protein metabolism Oxygen carrying function
Early Stage Development	Zinc, Manganese, Copper, Selenium	 Energy and protein metabolism Cell proliferation Normal tissue mineralization Cell membrane protection Hematopoiesis, the formation of hemocyanin, a large copper-containing protein that serve as the oxygen-carrying in the hemolymph
Meat Quality	Zinc, Selenium, Chromium, Iron	 Cell membrane protection Antioxidant activity Influences carbohydrate, lipid and protein metabolism Enhanced meat color

Feeding Recommendations for Shrimp

Mineral	Zinpro Performance Minerals® Products	Zinpro Recommendations Minimum Requirement ZPM, mg/kg diet
Zn	Availa® Zn ProPath® Zn	60
Cu	Availa® Cu ProPath® Cu	40
Mn	Availa® Mn ProPath® Mn	40
Fe	Availa® Fe ProPath® Fe	50
Įa		4
Se ^b	Availa® Se	0.3
Crc	MICROPLEX® Availa® Cr	0.4

^a Not a current ZPM source
 ^b Note upper limit allowed in EU is of 0.2 ppm, provided as organic source
 ^c Use where commercially available

Trace minerals are vital for optimal shrimp nutrition.

Improving the wellness and performance of animals for a healthier, more sustainable world.

For more information: contact your Zinpro sales representative or visit **zinpro.com/aquaculture**

All trademarks herein are property of Zinpro Corp. ©2021 Zinpro Corp. All rights reserved.